Yves DELIGNON
Professeur à l'institut TELECOM/TELECOM Lille 1
Dans de nombreux domaines technologiques (télécommunication, télédétection, géolocalisation, contrôle industriel, séismologie), l'information utile n'est pas accessible directement car noyée dans le signal observé, cette problématique fait appel au développement de méthodes de l'information cachée. Le filtre de Kalman, basé sur un modèle d'état linéaire, met en équation l'évolution du signal utile, et sa relation au signal mesuré à partir d'une série de mesures incomplètes ou bruitées. Cet article introduit des éléments d'estimation statistique dans le cas où la variable ou le processus à estimer sont cachés. Est décrit le modèle dynamique d'état, formé de l'équation du processus d'état que le filtre de Kalman cherche à estimer et du processus de mesure. Un paragraphe est ensuite consacré à l'estimation séquentielle du processus caché, afin d’en déduire le filtre de Kalman.