Gudrun ALBRECHT

Professeur des universités - Université Lille Nord de France - UVHC, LAMAV – CGAO Valenciennes

  • Article de bases documentaires : AF207
    Géométrie différentielle

    L’application des outils de calcul différentiel à l’étude de la géométrie s’appelle la géométrie différentielle. Sa présentation au sein d’un espace euclidien impose l’approche des théories des courbes ce qui permet ensuite d’appréhender les théories des surfaces. Les études de la géométrie différentielle sont fondées sur la représentation paramétrique des courbes et des surfaces, et notamment sur les définitions de point régulier et singulier, le changement de paramètre et la grandeur géométrique. Les propriétés métriques, ainsi que les notions de courbure des courbes et des surfaces, avec les grandeurs courbure et torsion, sont également essentielles. Au final, la présentation du théorème fondamental de la théorie des courbes, respectivement des surfaces, donne un moyen de caractériser et de distinguer les courbes, respectivement les surfaces, ainsi que de les reconstruire à partir de certaines données caractéristiques.

  • Article de bases documentaires : AF209
    Géométrie affine et euclidienne

    Cet article a pour thème la présentation des bases des géométries affine et euclidienne. Pour commencer, un rappel est fait sur la géométrie vectorielle : les notions d’espace vectoriel, de base et d’application linéaire. Les notions d’espace, de sous-espace et de groupe affine sont ensuite présentées. La géométrie euclidienne s’impose ensuite, la géométrie affine ne donnant pas les outils nécessaires pour mesurer les distances ou les angles. Sont alors introduites les notions d'espace euclidien, de distance, d'angle et d'orthogonalité ainsi que les similitudes et les isométries avec leurs groupes et leurs invariants respectifs, en particulier la classification détaillée des coniques et des quadriques par rapport aux isométries.

  • Article de bases documentaires : AF206
    Géométrie projective