Livres blancs en téléchargement gratuit

Pour accompagner vos abonnements aux ressources documentaires et services, Techniques de l'Ingénieur vous offre les dossiers spéciaux de la rédaction sur des sujets variés, à télécharger gratuitement.

Outils de l'intelligence artificielle appliqués au CND

Publié en mars 2020

Il existe des méthodes alternatives aux méthodes classiques pour l'estimation de propriétés thermophysiques. Ces méthodes s'appuient sur des outils issus du domaine de l'intelligence artificielle. Il s'agit des réseaux de neurones artificiels et des systèmes neuro-flous. Ils permettent ici d'estimer la diffusivité thermique d'un matériau homogène. En effet, la présence d'un défaut de structure modifie localement cette propriété, c'est pourquoi la connaître peut constituer une aide au CND. Les démarches décrites peuvent aisément s'appliquer à d'autres problèmes d'estimation de propriétés ou de paramètres.

La mise en application d’une méthode de contrôle non destructif nécessite l’interprétation et/ou l’exploitation des différents résultats qu'elle fournit. Il est donc indispensable de bien maîtriser l’outil permettant cette exploitation/interprétation, cette dernière pouvant simplement être menée grâce au savoir-faire du manipulateur/expérimentateur. Différents outils mathématiques peuvent toutefois être utilisés, a priori beaucoup moins soumis à la subjectivité de ce dernier.

Une démarche classique consiste à utiliser les méthodes inverses. Il s’agit alors de comparer un modèle de comportement aux mesures effectuées. Il est ainsi possible de remonter aux propriétés ou paramètres considérés en s’assurant simplement que l’écart entre les mesures et le modèle est négligeable. Cette approche nécessite une connaissance parfaite du système étudié et la possibilité d'exploiter cette connaissance pour le modéliser finement, sous peine de ne pas identifier correctement les différentes propriétés recherchées. Des modèles paramétriques peuvent être envisagés. Cependant, leur capacité de généralisation est souvent très limitée.

Une solution est alors d’avoir recours à des outils permettant de développer des modèles à partir d'exemples (ou cas d'espèce) et qui sont ensuite capables de généraliser en exploitant l'information apprise. Ces outils, les réseaux de neurones artificiels et les systèmes neuro-flous (pour ceux que nous avons testés), appartiennent au domaine de l’intelligence artificielle (IA). Ces systèmes permettent par ailleurs une prise en compte fine de la connaissance experte. Enfin, les possibilités offertes par les algorithmes génétiques sont en cours d’étude.

L’objectif de ce document est, après avoir présenté les outils issus de l’IA utilisés et à travers un exemple expérimental simple, de montrer leurs possibilités. Les points clés permettant la mise en place des démarches proposées sont détaillés de façon à ce qu’un expérimentateur puisse l’adapter à un problème d’estimation spécifique. Il est néanmoins fortement conseillé d’avoir des bases en modélisation des systèmes pour obtenir des résultats satisfaisants.

Vous souhaitez partager ce livre blanc ?   

Facebook

Twitter

Linkedin

Chargement

Merci de patienter ...