Une couche située sous la surface du Soleil, qui se comporte comme une casserole en ébullition, créerait un champ magnétique à petite échelle comme réserve d’énergie qui, une fois sorti de l’étoile, chaufferait les couches successives de l’atmosphère solaire via des réseaux de racines et de branches magnétiques1, telle une mangrove. Ce chauffage de l’atmosphère, impliqué dans la création du vent solaire qui remplit l’héliosphère, concernerait de nombreuses autres étoiles. Ce résultat parait dans la revue Nature du 11 juin 2015.
La température du Soleil, qui atteint environ 15 millions de degrés en son cœur, décroit progressivement pour chuter à 6000 degrés à sa « surface ». Elle devrait alors logiquement continuer à décroitre dans l’atmosphère. Pourtant, elle atteint environ 10 000 degrés dans la chromosphère et plus d’un million de degrés dans la couronne. Quelle est la source d’énergie capable de fournir et de maintenir l’atmosphère à de telles températures ? Une question qui représente un des grands problèmes de l’astrophysique depuis environ un siècle, d’autant plus importante qu’elle est associée à la source du vent solaire qui parvient jusqu’à la Terre.
S’il paraissait acquis qu’une partie de l’énergie de l’intérieur du Soleil parvenait à atteindre ces couches externes, le mécanisme restait mystérieux. Ces chercheurs se sont concentrés sur le champ magnétique à petite échelle, d’aspect « poivre et sel » en dehors des taches.
Des modèles numériques performants et les calculateurs du Centre de physique théorique (CNRS/École polytechnique) et de l’Idris du CNRS ont permis d’effectuer une simulation pendant quelques heures à partir d’un modèle constitué de plusieurs couches, l’une interne et les autres atmosphériques. Les chercheurs ont alors constaté que la fine couche sous la surface du Soleil se comporte en fait comme une « casserole » de petite épaisseur contenant un plasma2 en ébullition, chauffée par le bas et formant des « bulles » associées à des granules. Ce potage de plasma en ébullition est alors responsable d’un phénomène dynamo qui amplifie et maintient le champ magnétique : ce dernier, en sortant vers la surface, prend une apparence poivre et sel et forme des concentrations moins nombreuses, de plus grosse taille, de durée de vie plus longue et baptisées « méso-taches » solaires, le tout concordant avec les observations.
Les scientifiques ont également découvert qu’une organisation semblable à une mangrove apparait autour des méso-taches solaires : des « racines chromosphériques » enchevêtrées plongent entre les granules, entourant des « troncs d’arbres magnétiques » qui s’élèvent dans la couronne et sont associés au champ magnétique à plus grande échelle.
Leurs calculs ont montré que, dans la chromosphère, le chauffage de l’atmosphère est assuré par de multiples micro-éruptions survenant dans les racines de la mangrove porteuses de courant électriques très importants, au rythme des « bulles » issues du plasma en ébullition. Ils ont également découvert que des évènements éruptifs plus importants et moins nombreux existent au voisinage des méso-taches mais ne permettent pas de chauffer la couronne plus haute et à plus grande échelle.
Cette dynamique éruptive engendre alors des ondes « magnétiques » le long des troncs un peu comme un son sur une corde pincée, en se propageant le long de celle-ci. Ces ondes transportent alors l’énergie vers la couronne plus haute et leur dissipation progressive chauffe celle-ci. Leurs calculs montrent aussi qu’en retombant vers la surface, la matière éjectée forme des tornades, elles-mêmes observées. Des jets de plasma fins, proches de ces arbres, sont également produits et représentent les spicules3 découverts récemment. Autant de phénomènes, observés jusqu’ici individuellement et non expliqués, qui sont divers canaux d’énergie issus du plasma bouillonnant, et non la source unique invoquée.
Les chercheurs ont constaté que le flux d’énergie de leurs mécanismes correspond à celui requis par toutes les études pour maintenir le plasma de l’atmosphère solaire à sa température : 4 500 W/m2 dans la chromosphère et 300 W/m2 dans la couronne.
Et aussi dans les
ressources documentaires :
Cet article se trouve dans le dossier :
- Pour une climatisation passive des bâtiments : les matériaux à changement de phase
- Matériaux éco-conçus : une solution pour l'environnement ?
- L'isolation, nerf de la guerre
- La salle de bain du futur en images
- Nanotechnologies et nanomatériaux pour la construction - Bâtiment et milieu urbain
- D'étonnantes nano-fibres plastiques fortement conductrices
- Nanotechnologies dans le textile
- Toujours plus de propriétés pour le graphène
- Le graphène, bientôt détrôné par un nouveau matériau
- Livre blanc : JO 2012, 10 constructions exceptionnelles pour le Londres du futur
- Qu’est-ce qui fait courir Oscar Pistorius ?
- Londres mise sur des rénovations exorbitantes en vue des JO
- Les jeux Olympiques, générateur d'innovation !