La compréhension du phénomène de fracture d’un matériau soumis à un taux de déformation intense est un problème crucial pour nombre de travaux de recherche. En dépit de son intérêt, son étude repose sur une description fine multi-échelle, entre l’échelle atomique et les processus macroscopiques qui sont seulement réalisables par des simulations atomiques. L’étude de ce type de phénomène, au niveau atomique et avec des résolutions temporelles très petites (de l’ordre de la picoseconde, 10-12 s) était jusqu’à présent hors de portée des techniques expérimentales.
Bruno Albertazzi, chercheur au Laboratoire d’utilisation des lasers intenses (LULI), s’est intéressé à développer une nouvelle plateforme expérimentale permettant de mesurer à l’échelle atomique une propriété fondamentale d’un matériau : sa pression de spallation (ou de fracture), en se concentrant plus particulièrement sur le cas du tantale. Ses travaux viennent de faire l’objet d’une publication dans Science Advances le 3 juin.
Afin de déterminer la pression de spallation à taux de déformation extrême d’un matériau, le chercheur du LULI et ses collègues ont menés une expérience sur SACLA au Japon permettant de coupler un laser optique de puissance avec un laser X (Xray free électron laser, XFEL). Le premier génère une onde de choc dans l’échantillon (qui simule la collision de débris, particules, etc… avec un matériau par exemple), et le second, un faisceau de rayon X, permet de sonder la matière au niveau atomique et d’en déterminer le niveau de fracture.
Les chercheurs se sont intéressés plus particulièrement à la pression de spallation (de fracture) du tantale, utilisé notamment dans la production de superalliages employés par exemple dans l’aéronautique pour la construction des aubes de turbines des réacteurs d’avion ou dans l’industrie nucléaire pour la construction de centrales de type ITER. Cette expérience a montré qu’il était possible de comparer directement les résultats expérimentaux avec des simulations atomiques de large échelle et de contraindre ainsi le potentiel interatomique du tantale.
Des applications industrielles innovantes
Connaître la pression négative à partir de laquelle un matériau se fracture à taux de déformation donné revêt un intérêt particulier dans de nombreux domaines, et notamment pour l’aérospatial. A titre d’exemple, les débris spatiaux, dont la vélocité moyenne est de l’ordre de 10 km/s, peuvent gravement endommager les satellites et les navettes. Si la pression de fracture des matériaux utilisés dans la construction de ces différents éléments aérospatiaux est connue, il devient alors possible de tester et de développer des matériaux innovants plus résistants.
Par Bruno Albertazzi
Diplômé de l’Université de Metz-Nancy et de l’Université de Lund (Suède), Bruno Albertazzi est docteur en physique de l’École polytechnique et de l’INRS-Energies, Matériaux et Télécommunications (Institut national de la recherche scientifique du Canada).
Source : cnrs
Dans l'actualité
- Cristallographie : quand un ordre inattendu émerge d’un matériau nanostructuré
- Un nouveau matériau pour purifier le gaz naturel
- Des matériaux autoréparables pour l’aéronautique prêts dans 5 ans ?
- Le Q-Carbone, un nouveau matériau plus dur que le diamant
- Le graphène : matériau du XXIème siècle ?
- 8 matériaux de construction innovants et méconnus
- La Multifab, l’imprimante 3D capable de manipuler jusqu’à 10 matériaux
- Nouveau matériau le plus résistant du monde animal
- Des chercheurs sibériens mettent au point un nouveau matériau
- La coquille d’oeuf, symbole de l’économie circulaire !
- Une nouvelle méthode de synthèse des matériaux joue au billard avec les ions
- Un nouveau procédé sans colle pour lier métal et composite
- De nouvelles nanofibres à la force exceptionnelle
- Adhésifs : des feuilles d’hydrogel qui se verrouillent en milieu humide
- Stocker de l’énergie mécanique grâce aux matériaux auxétiques
Dans les ressources documentaires